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Full Vectorial Finite Element Formalism for
Lossy Anisotropic Waveguides

KAZUYA HAYATA, KAZUNORI MIURA, AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract —An efficient computer-aided solution procedure based on the

finite-element method is developed for solving general waveguiding strnc-

ttrres containing Iossy anisotropic materiafs. In this procedure, a forrtmla-

tion in terms of the transverse magnetic field component is adopted and

the eigenvahre of the final matrix equation corresponds to the propagation

constant itself. Thus one can avoid the unnecessary iterations which arise

when using complex frequencies. To demonstrate the strength of the

present method, numerical results are shown for a rectangular waveguide

filled with Iossy anisotropic dielectric with off-diagonaf elements in a

perrnittivity tensor.

I. INTRODUCTION

c OMPUTER-AIDED numerical analysis has become

a necessary tool for designing microwave and optical

waveguiding structures such as image guide, microstrip

line, optical channel guide, and optical fiber. Increasing

complexities of modern wave functional devices, particu-

larly in monolithic integrated circuit form, have created a

critical need for more accurate and efficient computer-

aided analysis techniques [1].

Of the methods available, the finite element method

(FEM) enables one to predict accurately the modal charac-

teristics of a waveguide system with an arbitrary cross

section. Most of the applications of the FEM to date have

been focused on a loss-free system. Recently, a formalism

in terms of the transverse magnetic field component estab-

lished for a loss-free system [2]-[4] has been extended by

the authors to a lossy system [5], [6]. The main advantage

of this approach is that one can avoid the unnecessary

iterations which arise when using complex frequencies [7]

because the eigenvalue of the final matrix equation to be

solved corresponds to the propagation constant itself.

However, it was assumed in [5] and [6] that the permittiv-

ity tensor has no off-diagonal elements.

In this paper, the approach of [5] and [6] is extended to

waveguides containing arbitrary lossy anisotropic materials

with off-diagonal elements in a permittivity tensor. To
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demonstrate the strength of this method, numerical results

for a rectangular waveguide filled with Iossy anisotropic

dielectric are presented and compared with those obtained

by the telegrapher equation method [8].

II. FINITE ELEMENT FORMALISM

We consider a three-dimensional dielectric waveguide

with an arbitrary cross section Q in the xy plane (Fig. 1)

whose relative permittivity tensor [c] is arbitrary:

where c~, and c[~ are the real and the imaginary part of the

complex relative permittivit y c,J, respectively. If all the

off-diagonal elements are neglected, i.e., ~ij”= O for all

i # j, (1) is reduced to the diagonal tensor assumed in [5]

and [6].

According to the same procedure as in the diagonal

permittivity tensor [5], [6], the following matrix equation

with the complex transverse magnetic field component

{H,} is derived:

([~,] +ko[~;] -k;[~t]){H,} = {0} (3)

where

[SJ=[D]T[S][D] (4)

[q]= [lqqr][lq (5)

[~t] = [D] T[T][D] (6)

[1{Hx}
{H,}= {Hy) - (7)

Here, kO is the free-space wavenumber, {O} is a null

vector, tlie superscript T denotes a transposition, and the

components of vectors { Hx } and { Hy } are the values of

Hx and H, at nodal points in Q, respectively. [S], [T’], [T],
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Fig. 1. Geometry of the problem. n: unit normal vector; $: unit tangen-

tial vector; 6’: angle between n and x am.; Q: wavegulde cross section;
17: impedance wall.

and [D] are as follows [5], [6]:

[s]= ~Jj[B’][t],-’[B] ~dxdy
ee

[T’] =j(zn/zO)~J,[N] *[ No]’dr
e’ e

[T] = ~jJ[N]*[N]’dxdy

ee

[

{o} –Y{N} -{N},

[B]= Y{N} {o} {N}x

j{ N}.v –j{N}.. {o}
1

[

{o} y{N} -{N},

[B’]= -y{iv} {o} {N}..

–j{N}., j{N}x {o} 1

[

sin28{N} –sinr9cosd{N}

[NO] = -sinf?cos8{N} COS28{N}

{o} {o}

[

{iv} {o} {o}

[N]= {O} {N} {O}

{O} {O} j{N} 1

[D] =

[1

[u]

[D.] -l[D,]

[D,] =~//{N}{N}rLiXLiy
ee

(8)

(9)

(lo)

(11)

(12)

{o}

{o}

j{N} 1
(13)

(14)

(15)

(16)

[D,]=-jy-l~//[{N}{~}I {N}{ N}.T]~X4J.
et

(17)

Here Ee and X., stand for summation over all elements

related to the domain Q and the boundary r, respectively;

y = a + jfl is the propagation constant (a= attenuation
constant, ~ = phase constant); Z. and 20 are the surface

impedance of 17 and the intrinsic impedance of vacuum,

respectively; the superscript * denotes a complex conjuga-
tion; {N} is a shape function vector [4]; {N}< ~

6’{ N }/d&; and [U] is a unit matrix. Provided that r is a

perfect electric or magnetic wall, the second term of the

left-hand side of (3) is dropped. Note that (3) is applicable

to arbitrarily anisotropic waveguides whose complex rela-

tive permittivity tensor is given by (l). If all the off-diago-

nal elements involved in (1) are neglected, (3) is reduced to

[5, eq. (20)].

Substituting (8)-(17) into (3)-(6) and ordering (3) ac-

cording to a descending power of y, we obtain

(Y4[C41+Y3[C31+ Y2[C2]+Y[C’]+[C”] ){ H,} = {o}.
(18)

The explicit form of submatrices of [Ci] is given in Ap-

pendix I.

Since (18) is a quadruple eigenvalue problem, it can be

reduced to the following linearized form [9]:

([~41-Y[~41){q4} = {0}

where

(19)

(20)

(21)

(22)

Here [0] is a null matrix.

For non-self-adjoint systems, one should further reduce

(19) to the standard eigenvalue problem:

[~41{~4}=Y{94} (23)

where

r [01 [u] [01 [01 I

I
[0]

[A’] = [.]

[0] [u] [0]

[0] [0] [u]

I

(24)

[A] [A4,1 [~431 [&41

[A,l] = -[c’] -’[c”] [A42]=-[C4]-l[C’]

[A’,] = -[ C’]-’[C2] [/444] = -[c’] -’[cy.

For CX,= C,X=.~y, = C,Y= O, [C’3] = [Cl] = [0]. In this

case, (18) is sirnphfled as

(Y4[C4]+Y’[C2]+ [C0]){H,} = {0}. (25)
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Since (25) is a quadratic eigenvalue problem, it can be

reduced to the following linearized form [9]:

([%1 -Y2[M){@} = {0} (26)

where

‘M2]=[H‘;]l ’28)
[1

{H,}

{~2}= Y,{HJ - (29)

For non-self-adjoint systems, one should further reduce

(26) to the standard eigenvalue problem:

[J421{%} =’Y2{92} (30)

where

[AJ=[H41] :2311 (31)

Equations (23) and (30) are standard’ eigenvalue prob-

lems whose eigenv@es directly correspond to the propa-

gation constant. Thus, one can avoid unnecessary itera-

tions using complex frequencies. The only disadvantage of

them is that they involve, respectively, 8NP and 4NP un-

known’ components in each eigenvector compared with

2NP components @ the original system, where NP is the

number of nodal points.

It is interesting to compare the results derived above

with those derived from the penalty function method [10].

Considering full tensor elements (1) and ordering the ma-

trix equation of the system according to a descending

power of y, we obtain

(y2[P2]+y[1’’]+[l’0]){~} = {0} (32)

where

[1{H}
{H}= {Hz} “

(33)

The explicit form of nonzero submatrices of [ P‘ ] is given

in Appendix II.

Equation (32) can then be reduced to

or

where

[K]=

[ikif] =

[A] =

([ K]-y[M]){q} = {O)

[A]{q}=y{q}

-[p”

[0]

[P’]

[P,]

[0] 1[P,]’

P,]

[0]I
[0]

-[ P,]-’[P”]

{q}=[y::;].

[u]

[P2]-’[P1]

(34)

(35)

(36)

(37)

(38)

(39)

Fig. 2. Rectangular waveguide filled with lossy anisotropic material.

Note that (34) and (35) involve 6NP unknown components

in each eigenvector.

III. APPLICATION

In this section, we present computed results obtained by

(18). In numerical implementations, the HITAC S-810/10

supercomputer is used and double precision is adopted to

avoid round-off errors. Inverse matrices are computed via

the Gauss–Jordan method. As an ‘eigenvalge solution

method, the LR algorithm is applied; eigenvectors are

computed via inverse iterations.

First, to establish the validity of our formulation, we will

compare our results with available data. As a 10SSY

anisotropic waveguide system, we consider a waveguide

filled with a carbon-loaded rubber sheet useful as a wave

absorber or a shielding material. The permittivity tensor is

given by

where + is

c = Cgcos,cp + 6YY
(0) sin2 +

xx
(40)

c(o) sin2 @+ c:) cos2 @‘w = xx
(41)

E = ~(o)
22 22 (42)

cX.v = Eyx
‘( ’9-49@’c@

(43)

eX2 =CZX=EYZ=C=Y=O (44)

a rolling direction of the anisotropic sheet,

cL’ =11:86 – jO.80, (~~’ = 20.83 – j3.16, and cj~)-= c~~ [8].

A schematic illustration of the guide is depicted in Fig. 2,

When 4 does not coincide with any coordinate axis, i.e.,

$ #n. 90° for any integer n, the off-diagonal elements CXY

and CYXare involved in the permittivity tensor. In this case,

the earlier finite element formulation [5], [6] is of no use.

Fig. 3(a) and (b) shows the dependence of the propagation

constant on the rolling direction of the anisotropic sheet. It

is found from these figures that our results are in excellent

agreement with those obtained by the telegrapher equation
method [8] both for phase and for attenuation.

Since the validity of the formulation has been demon-

strated above, in what follows we will present some useful

results computed by the present m&hod.

Fig. 4(a)–(e) shows the dispersion curves for various

rolling angles. As the permittivity tensor varies with +, the
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profile of the curves is dependent on +. It is interesting to

not~, that in Fig. 4(c) and (d) the attenuation curve exhibits

a dip at the transitional regime from the reactive to the

dissipative region. Such behavior is inherent in an

anisotropic system and has no counterpart in an isotropic

system.

When one wants to calculate the reflection coefficients

from lossy anisotropic material, which are necessary in

measuring a complex permittivity tensor by a standing-

wave method, detailed distributions of the electromagnetic

field are needed. Fig. 5(a)-(c) and Fig. 6(a)-(c) display the

magnetic field distributions for o = O and @= 60°, respec-

tively. For o = O, HY = O and the field is symmetric across

both the x and the y axis, whereas for @= 60°, all three

components of the magnetic field are involved

5~

3

1~
o 30 60 90

@ (deg)

(a)

0.5

2
2

0.4

0.3

0.2

0.1

‘m,,
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I
I I I

and they

o 30 Go 90
@ (deg)

(b)

Fig. 3. Propagation constant versus rolling angle. h/W= 0.4454. kow
= 4.5115. m + n = odd for TE~” and TMmZ,, modes. The waveguide
cross section is subdwided into 64 auadratic triangular elements: the
number of nodal points is 153. Solid lines indicate the present results
using (30); hollow squares indicate those obtained by Hashimoto er al.
[8]. (a) Normalized phase constant. (b) Normalized attenuation con-
stant.

exhibit no symmetry across the axes, indicating the full

vectorial nature of the modal field.

IV. CONCLUDING REMARKS

We have developed a full vectorial finite element method

for solving electromagnetic guided wave phenomena in

lossy anisotropic media by extending the formalism in

terms of the transverse magnetic field component estab-

lished for lossy isotropic media. The main advantage of

this approach is that one can avoid unnecessary iterations

using complex frequencies because the eigenvalue of the

final matrix equation corresponds to the propagation con-

stant. To demonstrate the validity of the method, we have

applied it to a rectangular waveguide filled with a carbon-

loaded rubber sheet. As a result of its efficiency and

versatility, we believe that the solution procedure de-

scribed in this paper will be useful for designing wave

absorbers, shielding materials, and other wave functional

components utilizing lossy anisotropic materials.

APPENDIX I

THE EXPLICIT FORM OF SUBMATRICES OF [Cz]

The explicit form of submatrices of [C’] in the text is

given by

[C:X] = - [G~~]

[Cjy] = [G~]

[C~Y] = [G:-’]

[C;.] = - [G~]

[C$x] = [G;y] - [G~] T

[C:,l = - [GY] + [Gi’]T

[c;!] = - [Gi-’] + [G:]T

[C;,] = [G~] -[G7]T

[C:r] = [G~] +(-[ G:~]T+[Gy]T)[G6 ]-1[G4]T

1[G5]T

-[ G4][G6]-’([G#’] -[GY])

+ kOj(Z./ZO) sin20[G(]– k~[GG]

[C:y] = -[ Gi=]~+[-[G&]~+[ GYt]~)[G,]-5

-[ G4][G6]-1(- [G: X]+[G;-’])

– kOj(Zn/ZO) sin Ocos OIG:]

[cj’..] = -[G?] +([GHT- [GV]T)[G,]-l[G,]T

-[ G,][G,]-’([G#] -[ G;Y])

– kOj(Z./ZO) sin8cos8[G(]

[%,1=W] +([GW-[GW][ G,l-IG51T

-[ G5][G,]-1(- [G~]+ [G:])

+ kOj(Zn/ZO) cos2d[G:]– k;[G6]
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Fig. 5. Magnetic field distributions in cross section for @=O. h/ W= O.4454. koW= 4.5115. HY=O anywhere in cross

section. (a) TEIO mode. (b) TE30 mode. (c) TM21 mode.



HAYATA et d: FULL VECTORIAL FINITE ELEMENT FORMALISM 881

lRe (Hz) I III II(HJ I lRe (Hz) I llm (Hz) I

0.01 0.01
O.ql 0.01

0 0

lRe(Hy) ! II. (H,) [ lRe (HY) I lIm (H,) [

0.01
0.01

0 0

IR

0.01

(Hz) I lIm (Hz) I lRe (Hz) I lIm (Hz) !

0.01

0

(a) (b)

lRe (Hz) I II. (Hz) I

0.01

0

lRe (H,) I lIm(HY) I

0.01

0

lRe (Hz) I lIm (Hz) I

0.01

0

(c)

Fig. 6. Magnetic field distributions in cross section for$=60°, h/ W= O.4454. koW=4.5115. All three components are

involved in this angle. The name of each mode corresponds to that for $=0. (a) TEIO mode. (b) TE30 mode. (c) TM21
mode.
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[<:.] = ([G:]T-[G;-’])[G,]-l[G,:]T
-[ G4][G6]-l([GP] - [G:’])

[C;y]=([G;’’]T-[G;X])[G,]-l[G,:IT
-[ G4][G6]-’[- [GY] + [Gp]T]

F%] =(- [G:”] +[GP1)[G,l-’[G.IT

-[ G5][G,]-l([Gy] - [G;’1)

[c&l=(- [GPI + [G;’I)[G,I-’[GJT

-[ G5][G,]”’(- [G~]+[Gy]Tj

[c:x] = -[ G4][G,]-l([Gp] -[G~]

-[ G;-’] T+[Gfl])[G,]-’[ G4]T

‘k(l~(zn/z0)[G4 ][Gc]-l[G:][G~] -’[G4]T

+ k;[G4][GG]-l[G4]T

[Q,] = -[ G41[W1([W -[w]

- [G;Y]T+ [G:]) [G,] -’[G5]T

–ko~(-vzo)[G41[ ’%-1[G:][G6]-1[ G5]T

+k; [G4][G6]-1[G5]~

[C;.] = -[ G,][G,]-l[[G;Y] - [GP]

-[ G;-I’]~+ [GP])[G6]-1[G4]T

–ko~(%’zo)[G5][ %-1[G;][G6]-1[G4]T

+ rk; [G5][G6]-1[G4]~

[c:.] = -[ GJIGJ1([GfY] -[G&]

-[ G;Y]~+[GP])[G6] -1[G5]~

–koj(%/Zo)[G5][ G6]-’[Gi][G6] -1[G5]T

+k:[G5][G6] -1[G5]~.

Here [G~], [G:], and [G~~] are defined by

[Gl]=~~({N}X{N}@d’
P

[G21=; JJ{N}.”{N};dxdY
e

[G31=i/J{N}x{N} ;dxdY
e

[G41=ijJ{N}. {N} ’dxdY

[G51=i J;{ N}., {N} ’dxdy

[G6]=~jj{N} {N} Tdxd~
ee

[’%l=q,{N}{N}’dr

[W] ‘;j/PzJ{~}x{~}:@
e

[G’] = ;jj%j{~}y{~};~d
e

[Gi’]=;//PZJ{~}X{~};~X~Y
e

[Gi’l=i J/Pt, {N}x{N}’dxdy
e

[G’] = ;JJPL, {N}.v{N}’dxdy
e

[G?] = ;ffPzJ{~}{~}TdXd~.
ee

Here pLJ is defined by

M
P Px, P..,.x.x

P Pyy.Yx P,: = [C]-l

P Pzy P.=Z.x

Px.r= (EY,E,, - CVZEZJ))/A

P.,., = (’x,’,’ - ‘xy’z:)/A

-(Px, – ~xy~p, – ~..,fy.” )/A

PYX= (CYZCZX- CYX~=z)/A

PYY= (c..c,. - ~x,E,x)/A

Py== (~xz~y.. – fxxf.yz )/A

Pzx = (Cv.xc,y – C,yC,.J/A

P,y = (C,yCZX - CXXC,y)/A

P,z = (wyy – ~xy~yx )/A

A = CXXE,YCZZ+ CXYE,=CZX+ ~XzEyX~zy

— <XZCYJCZX— Cxyf’xfzz — Cxxfyzfzy.

APPENDIX II

THE EXPLICIT FORM OF SUBMATRICES OF [p’]

The explicit form of nonzero submatrices of [P’] in the

text is given by

[PjX] = - [G?y]

[P:,] = [Gf]

[P;,.] = [G;]

[%] = [G:’]

[P:] = -#[G6]

[P:x] = -[ GY]’+[G;J’]

[%] = [G3]T- [G?]
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\P:Z] = - j[GJJ’]~+ j[G:Y]~-jp2[G4]

[?:x] = -[6’] +[G;zr

[P;,] = - [d’+ [GY]

[~;Z]=-j[G:]T+j[ G;y]T-jP2[G,]

[P:x] = -j[G#Y] +j[G;Y] -jp2[G4]~

[P&] =-j[G7] +j[G;Y]-jP2[G,]~

[P&] = [G?] +p2[GJ-k:[G6]

+ ~(z./%)kOsin20[G:]

[~$] = - [Gj2]T+p2[G,]- j(z./ZO)kosindcOs d[G:]

[P:z]=j[G;J’]T- j[G:]T

[~f~]=- [GY]+p2[G,]T-j( z./-% )kOsinOcOs8[G:]

[%] = [Gfz] +P2[G,]-~;[G,]

+ J(zm/zo)kOcos2 @[G(]

[~;] = -j[Gfy] +j[G7]

[P~] = -j[G~] +j[Gfl]

[P;] =j[G~]-j[G;z]’

[P:] = [G:~] + [GF] -[ G;Y]’ - [GP] -k:[G6]

where p is the penalty coefficient [10].
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