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Full Vectorial Finite Element Formalism for
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Abstract — An efficient computer-aided solution procedure based on the
finite-element méthod is developed for solving general waveguiding strue-
tures containing lossy anisotropic materials. In this procedure, a formula-
tion in terms of the transverse magnetic field component is adopted and
the eigenvalue of the final matrix equation corresponds to the propagation
constant itself. Thus one can avoid the unnecessary iterations which arise
when using complex frequencies. To demonstrate the strength of the
present method, numerical results are shown for a rectangular waveguide
filled with lossy anisotropic dielectric with off-diagonal elements in a
permittivity tensor.

I. INTRODUCTION

OMPUTER-AIDED numerical analysis has become
C a necessary tool for designing microwave and optical
waveguiding structures such as image guide, microstrip
line, optical channel guide, and optical fiber. Increasing
complexities of modern wave functional devices, particu-
larly in monolithic integrated circuit form, have created a
critical need for more accurate and efficient computer-
aided analysis techniques [1].

Of the methods available, the finite element method
(FEM) enables one to predict accurately the modal charac-
teristics of a waveguide system with an arbitrary cross
section. Most of the applications of the FEM to date have
been focused on a loss-free system. Recently, a formalism
in terms of the transverse magnetic field component estab-
lished for a loss-free system [2]-[4] has been extended by
the authors to a lossy system [5], [6]. The main advantage
of this approach is that one can avoid the unnecessary
iterations which arise when using complex frequencies [7]
because the eigenvalue of the final matrix equation to be
solved corresponds to the propagation constant itself.
However, it was assumed in [5] and [6] that the permittiv-
ity tensor has no off-diagonal elements.

In this paper, the approach of [5] and [6] is extended to
waveguides containing arbitrary lossy anisotropic materials
with off-diagonal elements in a permittivity tensor. To
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demonstrate the strength of this method, numerical results
for a rectangular waveguide filled with lossy anisotropic
dielectric are presented and compared with those obtained
by the telegrapher equation method [8].

II. FINITE ELEMENT FORMALISM

We consider a three-dimensional dielectric waveguide
with an arbitrary cross section @ in the xy plane (Fig. 1)
whose relative permittivity tensor [¢] is arbitrary:

€xx ny Exz
[e]=16x & € (1)
€zx ‘Ezy €zz

(2)

where ¢/, and ¢’ are the real and the imaginary part of the
complex relative permittivity ¢, , respectively. If all the
off-diagonal elements are neglected, ie., €; =0 for all
i # j, (1) is reduced to the diagonal tensor assumed in [5]
and [6].

According to the same procedure as in the diagonal
permittivity tensor [5], [6], the following matrix equation
with the complex transverse magnetic field component

{ H,} is derived:

—— ! . ig
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([Sd+ k[T =BT (H) =0} ()

where

(4)
(5)
(6)

[7:] = [p]"[T][ D]

[7.] =[] [T][D]

=] (e |

Here, k, is the free-space wavenumber, {0} is a null
vector, the superscript T denotes a transposition, and the
components of vectors { H,} and {H,} are the values of
H, and H, at nodal points in £, respectively. [S], {77}, [T],

(7
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Fig. 1.
tial vector; §: angle between » and x axis; Q: wavegmde cross section;
T': impedance wall.

and [ D] are as follows [5], {6]:

[51=X [[[B1[c]. " 1B] dxay (®)
(7= 7(2,/2) & [ [N]1%]"dT (©)
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(D=L [[[(N}(N)T (NN )]] dray.
(17)

Here ¥, and ¥ stand for summation over all elements
related to the domain  and the boundary T, respectively;
v=a+ jB is the propagation constant (a = attenuation
constant, 8 = phase constant); Z, and Z; are the surface

Geometry of the problem. n: unit normal vector; s: unit tangen-

impedance of I' and the intrinsic impedance of vacuum,
respectively; the superscript * denotes a complex conjuga-
tion; {N} is a shape function vector [4]; {N},=
d{N}/0& and [U] is a unit matrix. Provided that I' is a
perfect electric or magnetic wall, the second term of the
left-hand side of (3) is dropped. Note that (3) is applicable
to arbitrarily anisotropic waveguides whose complex rela-
tive permittivity tensor is given by (1). If all the off-diago-
nal elements involved in (1) are neglected, (3) is reduced to
[5, eq. (20)].

Substituting (8)—(17) into (3)-(6) and ordering (3) ac-
cording to a descending power of vy, we obtain

(v[C* ]+’ [P+ y?[C? ]y CT+[CON){H,} = {0}
(18)

The explicit form of submatrices of [C‘] is given in Ap-
pendix I.

Since (18) is a quadruple eigenvalue problem, it can be
reduced to the following linearized form [9]:

([K4]*Y[M4]){Q4} = {0} (19) 7
where
[—[c°] [o] [0] [o]

O O () T i N e R oty
K= e e g |
[0l [¢*1 [o] [0]

(¢ [ [ [ct]

_|le] [e] et o]
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[[c*] [0] [o] o]

[ (H,)
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Here [0] is a null matrix.
For non-self-adjoint systems, one should further reduce
(19) to the standard eigenvalue problem:

[A4]{‘14} =Y{CI4} (23)
where
o] [u] [0] [o0]
0 O 2 T () R £ 74 B (1)
A=ty oy @ oy | @
[4a] [4,] [45] (4]
[4n]=-[C*] [ [4]=-[c*] '[c]

—~1 —
[45]==[C*1[C’]  [4w]l=~[c*17C7].
For e, =€, ,=¢, =¢,=0, [GG]=[C;]=[0]. In this

case, (18) is simplified as

(v*[C*]+y2[C?]+[C°D{H,) = {0}. (25)
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Since (25) is a quadratic eigenvalue problem, it can be
reduced to the following linearized form [9]:

([K,]1- ¥’ [M:]) {4n) = {0} (26)

where
[-Ic°1 (o]
P RO
e 1e4
Sty o .
(0} = (H,) (29)
9> L'Yz{Ht} :

For non-self-adjoint systems, one should further reduce
(26) to the standard eigenvalue problem:

[4,1{9,} =v*{4,}

(30)

where

ey ) e

Equations (23) and (30) are standard eigenvalue prob-
lems whose eigenvalues directly correspond to the propa-
gation constant. Thus, one can avoid unnecessary itera-
tions using complex frequencies. The only disadvantage of
them is that they involve, respectively, 8N, and 4N, un-
known components in each eigenvector compared with
2N, components in the original system, where N, is the
number of nodal points.

It is interesting to compare the results derived above
with those derived from the penalty function method [10].
Considering full tensor elements (1) and ordering the ma-
trix equation of the system according to a descending
power of y, we obtain

(v[P1+y[P+[PN{H} = {0} (32

where

-} e

The explicit form of nonzero submatrices of [ P'] is given
in Appendix II.
Equation (32) can then be reduced to

(IK1-v[M]){q} = {0} (34)

orh [4]{q} =v{q} (35)
S N I
e[ 1
[A];—[Pf]o‘]l[w] —[Pgllj“]l[zﬂ]} o
{q}= LYEZH | (39)
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Fig. 2. Rectangular waveguide filled with lossy anisotropic material

Note that (34) and (35) involve 6N, unknown components
in each eigenvector.

III. APPLICATION

In this section, we present computed results obtained by
(18). In numerical implementations, the HITAC S-810,/10
supercomputer is used and double precision is adopted to
avoid round-off errors. Inverse matrices are computed via
the Gauss-Jordan method. As an eigenvalue solution
method, the LR algorithm is applied; eigenvectors are
computed via inverse iterations.

First, to establish the validity of our formulation, we will
compare our results with available data. As a lossy
anisotropic waveguide system, we consider a waveguide
filled with a carbon-loaded rubber sheet useful as a wave
absorber or a shielding material. The permittivity tensor is
given by '

€ = €57 008" ) + €)sin’ (40)
€y = e sin’¢ + E_(v(.)v) cos” ¢ (41)
om e ()
o= ((Q-e)singeose  (43)
=€, =€, =€, =0 (44)

where ¢ is a rolling direction of the anisotropic sheet,
€®=11.86— j0.80, €0 =20.83— j3.16, and €9 =€) [8].
A schematic illustration of the guide is depicted in Fig. 2.
When ¢ does not coincide with any coordinate axis, i.e.,
¢ # n-90° for any integer n, the off-diagonal elements e,
and €, are involved in the permittivity tensor. In this case,
the earlier finite element formulation [5], [6] is of no use.
Fig. 3(a) and (b) shows the dependence of the propagation
constant on the rolling direction of the anisotropic sheet. It
is found from these figures that our results are in excellent
agreement with those obtained by the telegrapher equation
method [8] both for phase and for attenuation.

Since the validity of the formulation has been demon-
strated above, in what follows we will present some useful
results computed by the present method.

Fig. 4(a)-(e) shows the dispersion curves for various
rolling angles. As the permittivity tensor varies with ¢, the
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profile of the curves is dependent on ¢. It is interesting to
note that in Fig. 4(c) and (d) the attenuation curve exhibits
a dip at the transitional regime from the reactive to the
dissipative region. Such behavior is inherent in an
anisotropic system and has no counterpart in an isotropic
system.

When one wants to calculate the reflection coefficients
from lossy anisotropic material, which are necessary in
measuring a complex permittivity tensor by a standing-
wave method, detailed distributions of the electromagnetic
field are needed. Fig. 5(a)—(c) and Fig. 6(a)—(c) display the
magnetic field distributions for ¢ =0 and ¢ = 60°, respec-
tively. For ¢ =0, H,=0 and the field is symmetric across
both the x and the y axis, whereas for ¢ = 60°, all three
components of the magnetic field are involved and they

)
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Fig. 3. Propagation constant versus rolling angle. & /W =0.4454. kW
=4.5115. m+n=odd for TE,, and TM,,, modes. The waveguide
cross section is subdivided into 64 quadratic triangular elements; the
number of nodal points is 153. Solid lines indicate the present results
using (30); hollow squares indicate those obtained by Hashimoto er al.
[8). (a) Normalized phase constant. (b) Normalized attenuation con-
stant.

exhibit no symmetry across the axes, indicating the full
vectorial nature of the modal field.

1V. CoONCLUDING REMARKS

We have developed a full vectorial finite element method
for solving electromaghetic guided wave phenomena in
lossy anisotropic media by extending the formalism in
terms of the transverse magnetic field component estab-
lished for lossy isotropic media. The main advantage of
this approach is that one can avoid unnecessary iterations
using complex frequencies because the cigenvalue of the
final matrix equation corresponds to the propagation con-
stant. To demonstrate the validity of the method, we have
applied it to a rectangular waveguide filled with a carbon-
loaded rubber sheet. As a result of its efficiency and
versatility, we believe that the solution procedure de-
scribed in this paper will be useful for designing wave
absorbers, shielding materials, and other wave functional
components utilizing lossy anisotropic materials.

APPENDIX |
THE EXPLICIT FORM OF SUBMATRICES OF [C']

The explicit form of submatrices of [C'] in the text is
given by

[c
lc:

Il

(;}x
(6]

ct

T

xy
3
Cix

+[Gs~']T

-[G=]"

([GW] +[6 ]G] G]"
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[c2] =-[65]" +(~[6]" +[621")[Gs] (651"
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3
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Fig. 4. Dispersion characteristics. /W = 0.4454. Curves 1 and 2 correspond to the fundamental and the first higher order
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Here [G.], [G{], and [G}/] are defined by THE EXPLICIT FORM OF SUBMATRICES OF [ P']
_ The explicit form of nonzero submatrices of [P'] in the

[G1] ZJL{N}X{N}xdxdy text is given by
[G] =X [[(N},(N)]dxdy |Pi] = -16]

e " e [P2 - va
G, = N} {N)]dxa .
[Gs] =X [[ (N} () dvay (72] = [6]
[G1=X [[(N} AN} axdy [P2]=[G&"]

[PZ] = _PZ[GG]

[G1=X [[{N),{N} dxdy
= [PL] =[G ]" +[65]

(Ge] =2 [[{N}{N} dvay [71,] = [G4- 1"~ [65]
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(PL]=—jl6P1" + 6] - jp*[G,]
[PL]=-[ar]+[cx]"
[P] = —[6]" +[677]
[PL] == jl6&]" + 16217 = jp*[Gi]
[PL] = - jl6p]+ jl6] - ip*lG]"
[ _J[G 1+ 1671 - jp?les)”
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"‘f(Zn/Zo)k051n20[G6']
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[P ]“JG] jleg]” n
[PS] = - [65]+ p*[Gs]" = j(Z,/Zo) kosinbeos 6] G¢ ]
[P ] = [G“] +P2[G2]_k3[G6]

+(Z,/Zy)kycos? [ G{]
=—JjlaP]+j165]

[P
(28] == jl63] + j[657]
2.
[

L=
Pl]
51 =

5] =iler]-iles]”
2 =[epT+[es]-[62]" - (6] - kilG]
where p is the penalty coefficient [10].

ACKNOWLEDGMENT

The authors would like to thank Dr. M. Matsuhara of
Osaka University for his comments on A-matrices. They
also thank A. Misawa for his assistance in completing this

paper.

REFERENCES

1] T. P Young, ‘Design of integrated optical circuits using finite
elements,” Proc. Inst. Elec. Eng., vol. 135, pt. A, pp. 135-144,
Mar. 1988.

[2] K. Hayata, M. Koshlba M. Egucln and M. Suzuki, “Novel finite-
element formulation without any spurious solutions for dielectric
waveguides,” Electron. Lert., vol. 22, pp. 295-296, Mar. 1986.

[3] K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Vectorial
finite-element method without any spurious solutions for dielectric
waveguiding problems using transverse magnetic-field component,”
IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1120-1124,
Nov. 1986.. . -

[4] K. Hayata, M. Koshiba,” M. Eguchi, and M. Suzuki, “Elimination
of spurious solutions in vectorial finite-element analysis of dielec-
tric waveguides—A method using transverse magnetic-field compo-
nent,” (in Japanese) Trans. IECE Japan, vol. J69-C, pp. 1487-1493,
Dec. 1986.

[51 X. Hayata, K. Miura, and M. Koshiba, “Finite-clement formula-
tion for lossy waveguides,” IEEE Trans. Microwave Theory Tech.,
vol. 36, pp. 268-276, Feb. 1988.

[6] K. Hayata, K. Miura, and M. Koshiba, “Vectorial finite-element
formalism for electromagnetic waveguiding structures with loss
and/or gain,” (in Japanese) Trans. IEICE, vol. J11-C, pp. 777782,
June 1983.

[7]1 A.D. McAulay, “Variational finite-element solution for dissipative
waveguides and transportation application,” TEEE Trans. Mi-
crowave Theory Tech., vol. MTT-25, pp. 382-392, May 1977.

[8] O. Hashimoto and Y. Shimizu, “A measurement of the complex
permittivity tensor by a standing-wave method in a rectangular
waveguide,” IEEE Trans. Electromagn. Compat., vol. EMC-29, pp.
141-149, May 1987.

883

[9] K. Washizu, H. Miyamoto, Y. Yamada, Y. Yamamoto, and T.
Kawai, Eds., Finite-Element Method Handbook I. Fundamentals (in
Japanese). Tokyo: Baifukan, 1981, pp. 133-136.

[10] M. Koshiba, K. Hayata, and M. Suzuki, “Finite-element analysis of
anisotropic waveguides with tensor permittivity,” Electron. Com-
mun. Japan, pt. 1, vol. 69, pp. 93-101, 1986.

Kazuya Hayata was born in Kushiro, Japan, on

- December 1, 1959. He received the B.S. and M.S.
degrees in electronic engineering from Hokkaido
University, Sapporo, Japan in 1982 and 1984,
respectively.

Since 1984, he has been an Instructor of Elec-
tronic Engineering at Hokkaido University. He
has been engaged in research on guided-wave
optics, microwave theory and techniques, com-
putational mechanics for field problems, quan-
tum-wave electronics, and surface acoustic waves.

Mr. Hayata is a member of the Institute of Electronics, Information
and Communication -Engineers (IEICE), the Japan Society of Applied
Physics (JSAP), the Optics Division of the JSAP, and the Optical Society
of America. In 1987, he was awarded the 1986 Excellent Paper Award by
the IEICE.

Kazunori Miura was born in Abuta, Hokkaido,
Japan, on July 17, 1963. He received the B.S. and
M.S. degrees in electronic engineering from
Hokkaido University, Sapporo, Japan, in 1986
and 1988, respectively.

He is now with NTT Software Laboratones
Tokyo, Japan.

Mr. Miura is a member of the. Institute of
Electronics, Information and Communication
Engineers.

Masanori Koshiba (SM’84) was born in Sapporo,
Japan, on November 23, 1948. He received the
B.S.,, M.S,, and Ph.D. degrees in electronic engi-
neering from Hokkaido University, Sapporo,
Japan, in 1971, 1973, and 1976, respectively.

In 1976, he joined the Department of Elec-
tronic Engineering, Kitami Institute of Technol-
ogy, Kitami, Japan. From 1979 to 1987, he was
an Associate Professor of Electronic Engineering
at Hokkaido University, and in 1987 he became
a Professor. He has been engaged in research on
lightwave technology, surface acoustic waves, magnetostatic waves, mi-
crowave field theory, and applications of ﬁmte element and boundary
element methods to field problems.

Dr. Koshiba is a member of the Institute of Electronics, Information
and Communication Engineers (IEICE), the Institute of Television Engi-
neers of Japan, the Institute of Electrical Engineers of Japan, the Japan
Society for Simulation Technology, and the Japan Society for Computa-
tional Methods in Engineering. In 1987, he was awarded the 1986
Excellent Paper Award by the IEICE.



